Two wheel skateboard project file report download

Two wheel skateboard project file report download

two wheel skateboard project file report download

Two wheeled self balancing electric vehicle is studied in this thesis. The system,. 2TEA (2 Tekerlekli Elektrikli Araç – 2 Wheeled Electric Vehicle) is After that, model is compiled and generated executable code is downloaded Project”, Project Report, Grand Valley State University The Padnos School of. Disclaimer. Safekids New Zealand has endeavoured to ensure material in this document is 2. Safekids New Zealand Position Paper: Child skateboard and scooter injury prevention. Safekids New scooters and other small wheeled recreational devices. A Corporation, Skateboard safety gear project report, Auckland. Small manned electric vehicles - e-bikes to car-like micro EVs - are closely related this report then please use the download links on the right to download the files. Harley Davidson Project LiveWire Motorised Skateboard Yuneec China.

Two wheel skateboard project file report download - are

One Wheel Electric Skateboard

Introduction: One Wheel Electric Skateboard

Hello

I had a hoverboard I haven't used for ages so my creative side took over and I decided to try making an electric one wheeled skateboard. I didn't want the electronics in the hoverboard to go to waste and wanted to do something creative with the time I had before a new semester of collage started. The idea came from seeing the Onewheel motorized skateboard which isn't commercialy available in Europe and I decided that was the perfect way to repurpose the components of my old hoverboard since the hoverboard isn't really made for longer and rougher rides in comparison to the Onewheel.

Here is how I did it (even though it can be done in a million and one ways) and what you'll need:

Step 1: Tools and Materials

For

materials I used:

-Parts from my hoverboard(whells, battery, mainboard, gyro board, leds...)

-Some steel metal extrusions (24x48mm and 24x24mm)

-metal sheet

-plywood

-plexiglass

-M3, M4 Screws and nuts

And for the tools I used 3D printer, drill, cutting tools and some sanding tools.

Step 2: Planning and Design

Firstly I designed everything digitally to make sure that the sizing was right for all the parts for easier assembly later on for which I used Fusion 360. I had to recreate the parts I already had from the hoverboard and the metal extrusions in Fusion and then add the parts I needed to print out and modify the design that I wanted for the skateboard so that it matched all those parts and lastly assemble it all together digitally.

Step 3: 3D Printing the Parts

I 3D prinetd out the parts that I designed in Fusion 360. Here are all the files I printed along with Fusion 360 file. After printing I painted some of the parts that are going to be visible on the board.

Step 4: Building a Frame

Cutting and drilling

Fusion 360 has a great feature to make real life 2D drawings of components I already had physically that I recreated digitally so that I could print it out on paper and glue it over the parts for more precise cutting and drilling.

Painting the metal extrusions

Firstly I covered the extrusions with primer. Secondly I sprayed on a few coats of anticorosive chrome paint. Lastly I put on a coat of trasparent matt spray.

Assembly of frame

Since it would be very difficult to hold a nut in place inside the metal extrusion while screwing I designed and printed out these parts (see the picture above) to put them into the extrusions to hold the nuts in place.

The frame is made out of four 163mm long extrusions wich are connected to two 525mm long extrusions with sixteen L shaped metal sheets and some M3 screws since welding wasn't an option for me.

Step 5: The Wheels

I'll be using both 350W wheels from the hoverboard as you could've already seen from the design. For mounting each wheel I reused four screws and casted metal part from hoverboard which is screwed with corresponding nuts already fitted in the frame.

Step 6: The Wiring

The wheel

wires were too short so they had to be extended and then were fitted trough the frame to the place where the mainboard is going to be placed. Battery wires were also too short so I made an extesion cable with male on the one side and female XT60 connector on the other which is also fitted trough the frame. I also added fuse casing with 10A car fuse for extra safety.

Step 7: Installing Electronics

Before installing them, electronics had to be modified a bit. Instead of two gyro boards I used only one so motor outputs are exactly the same. To enable that I just soldered two signal wires (blue and white) with the other two from the gyro board that I'm keeping, blue wire to blue and white wire to white. It's important to use gyro from the battery side. Also one motor had to be rewired to spin in the same direction as the other one. So blue and green motor wires and blue and yellow sensor wires were switched. I decided to activate the motors with a button that I step on, so I unsoldered the two photo interrupters, shorted one side and added PNP transistor on the other side. I used 2N3906 PNP transistor with emitter pin soldered to E and collector pin to +. One 220Ohm resistor connected from ground to base pin and one 220Ohm resistor from base pin to emitter pin. Lastly I connected the button with one side on 5V and other on base pin.

To mount electronics I cut out the board shape out of a metal sheet to be the same shape as the wooden part and screwed the electronics to it with some help of few 3d printed parts. I initially wanted to make a metal lid to protect the electronics but I decided to make it out of some plexiglass because I think it looks nicer and I can keep an eye on them at all time.

Step 8: The Board

Two wooden board parts were made out of some 10mm plywood. The button was placed on the wooden board on electronics side along with battery indicator LEDs. On the button I glued 40x40mm 3d printed platform for easier activation and wrapped some plastic around the platform. To finish the boards I glued some grip tape with wood glue and cut it to shape and screwed them to the frame with the iconic four screws on each side to give it that skateboard feel.

Step 9: The Battery

On the battery side I also cut the metal sheet with the wooden board and used a plastic piece from the hoverboard for mounting. Also I glued some packing material all around the battery section. The battery lid was also cut out from the metal sheet, bent it into shape and screwed to the frame with M4 screws.

Step 10: Finishing Touches

To finish it off I mounted some 3D printed parts that I've printed earlier like the end bumpers and shields around the wheel to deflect any debris. Also I added LED strips from the hoverboard to front and back bumpers by gluing the to some aluminum profiles to act as heatsink as they tend to get really hot. I also cut two windows for each end out of plexiglass to go over the LEDs and with that I was finished with the build.

Step 11: Riding the Electric Board

So to ride the board I have to put one leg on the battery side and then the other leg on the board with the button to activate it. By default, the motors will not turn while the board isn't level so I don't have to worry about it just flying away uncontrollably. Max speed of the board is the same as the hoverboards, so 15km/h and the board ended up weighing 10,9kg.

Be the First to Share

Did you make this project? Share it with us!

Recommendations

  • Plywood Challenge

  • Battery Powered Contest

  • Plastic Contest

15 Discussions

hi, awsome build, what size hoverboard wheels do you have? 6.5 inch?

Thanks, yup the wheels are 6.5 inch

Great project!
However, I'm trying to make my own version now and I'm unable to successfully mod the gyro board with the transistor. Did you remove both IR interrupters and applied transistors on both sides, or did you short one of them to 'always trigger' and only control the other with the button? Could you perhaps clarify your solution a bit more? Perhaps with a circuit diagram or a close-up on both sides of the board, for both 'interrupters'? Right now I'm not sure what parts to short circuit or where to solder the resistors to.
Thanks.

Thanks, glad you liked it,
To answer your question, I removed both interrupters, shorted the "E" and "+" pins on one side, and connected the transistor on the other side as shown in the scheme (it's hard to see clearly on the picture). I hope this helps you, it would be awesome to see your creation :D

Thanks for a great and fast reply! That clarifies a lot! I'll get back at it. My gyro board isn't exactly the same, but it should be using the components the same way.
Did it make a difference if you shorted the "K1" or "K2" interrupter? In your picture you seem to have connected the transistor to K1 so I guess you shorted K2 then.

Okay, so.. When I was testing my solution using your guide, I did it with a gyro board 'component side up', but the board is ment to be the other way around. So once I turned it the other way around I got it to work! Thank you!

It seems to me, that due to the wheels being close together in the center instead of far apart on a normal hoverboard, it has less fine control over turning. Is it like this?

Hi, unlike a hoverboard which depends on the wheels spinning in different direction or at different speeds to turn, the wheels on this board act as one bigger wheel (they always spin in the same direction at the same speed) so turning is done just by tilting the board which does work pretty well.

Really nice job on this skateboard! And thanks for including the video/GIF :)

Thanks!

Great job !!! Does it turn well, like a onewheel ?

Thanks, it turns really well just by slightly tilting the board, but I can't really compare it to the onewheel since I never tried riding one

It got two wheels.. Not one..
Otherwise, it’s a cool device. I’ve seen a lot of students whizzing around on these boards around here.

Perhaps 'Single Fulcrum Electric Skateboard' would have been a more apt title?

Maybe my eyes are deceiving me, but it appears to be a two-wheeled skateboard.

Источник: https://www.instructables.com/One-Wheel-Electric-Skateboard/
two wheel skateboard project file report download

Two wheel skateboard project file report download

1 thoughts to “Two wheel skateboard project file report download”

Leave a Reply

Your email address will not be published. Required fields are marked *